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A NUMERICAL METHOD FOR THE RADIATION TRANSPORT EQUATION
IN PLANE GEOMETRY .

I. INTRODUCTION

The scope of work reported here is the gpvelopment of a numerical

" method for performing time dependent calculations of radiative energy

transport through slab Ofrészaing interest has been the retaining of -
contact with the.diffusion approximation by malntaining a parallel of
numerical methods. In doing so, 1t has been found that the radiation -
intensity may effectively be eliminated from the equations and from
computer storage. As is the case in the'diffusion‘approximatlon, only the
material ﬁemperature remains. Conservation of energy is also a direct

consequence of the method. However, to accomplish this objective a number

" of simplifications have been made which may limit the possibility of

generalizing the method. These include the assumptions of:

1. Plane slab geonetry and boundary conditions of several simple
types. '

a. Free surface radiating into vacuum.
b. Opaque surface with zero flux.
c. Specified forward or backward flux into the slab.

2. ~Negligibility of the time for photoﬁ flight between emission
and absorption. Related neglect of the specific heat of ‘the
radiation field in comparison with the specific heat of the
material.

3. Local thermodynamic equilibrium of the material.

k. Interaction of radiation with matefial onlj through true
absorption. No photon scattering. Frequency independent
absorption coefficient. :



Severa.l of these assumptions, namely 2, 3, a.nd neglect of sca.ttering,
'ma.y be sa.tisfied by restricting considera.tion to low temperature transport
through materials of not too smail density. The more serious approximation
of I‘requeney independence of the absorption coefficient has been ‘made in -
order to sepaf.ate the two important problems of the geometrical behavicr
and the frequency behavior oi‘ the radiation transport equatien. . Extension
oi‘.the present method to.include groups of photons having di-i“'ferent a.b.sorption
coefficients will proba.biy not offer serious difficulties. to the rresent
method. However, it is by no means clear that extension 'of thie basic
‘procedure to other’ geometries can'be made. In this sense, the present work
"is.of interest in its spec.ial applica.bility to sladb pi‘oblems. In‘e'ompensa‘tion
it offers a rather simple system of equations having small storage require-
ments- and light stability restrictions which allow. rapid solution of radiation
tra.nsport problems

" II. INTEGRAL EQUATION F'OR.RADIATIV'E TRANSFER .

The assumptions of plane geometry and eiixnuthal smetm of the
radiation intensity permit considerable simplification of the equations of
'radiative transfer. As will be shown, the equation for the rate of change o
of inai:eria.l energy for this case can be reduced to an’ integra.l equa.tion inA _
vhich all reference to the 'intensity .of the radiation field has been elimi-

nated.

The equation for the rate of change of the intensity of the radiation
field I) 1is:

aly Iy " ' ) S e
e mw (B - Iy oo ()

vwhere

u =cos &, ©= polar angle of radiation,
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h’z)
=(1- ! )o—— , o— = absorption coefficient a.nd
gy takes account of the induced emission of the material. .

an 23
BV"‘C3 KT

is the Planck function source assuming that the xﬂaterial collision rete 15_,
sufficient to establish local .thermodynamic equilibrium in the ma.terial
cha.racterized by a ma.terial temperature T. Photon scattering and pole.ri-
zation dre neglected in'Equation (1). ' '

Dropping the subscript indication of frequency and introducing the

optical depth '
jx 0“ :.

the 1ntensity I at position zrand in direction p can be exprebsed from
Equation (1) in terms of the Planck function at points a.long the photon
pencil of radiation. : :
R T S (2 : o
"I = -“[uLB(@) “d’C‘+I(’L’)J - (2)

.o 0 d .
The effect of retardation or time of photon flight from the soufce has ;been
neglected so that the intensity is approximated as depending only on ’
i,nste.ntaneous values of the Planck function. This corresponds to neglecting

the fifs,t term of Equation (1) and is- justified when.the temperature waves
travel much slower then c¢. The integral extends into the material to an

© arbitrary depth ’C’ at which point .the intensit.y in the p - direction is

I (’L’o) This point may. be taken as the boundary of the system or it might
be & depth beyond which the contri_bution to I is negligible.

Having neglected the time dependence of the Boltzmann equation, the
dependence on time of the radiation transport equation ax;ises from the change
of energy as governed by the first law of thermcdynamics. In general, the
total internal energy chenges as a result of motion of the material a.nd
of entropy cha.nging processes such a.s heat conduction. We wish to set in



 evidence in this discussion the characteristics of radiative transfer,
. cunsequently, we neglect all other mechanisms of energy cnange, including
work, and write:

(3)

“Wwhére EM is the materisl internal energy per unit volume, ER is the radient

L energy per unit volume given by.

ER 2::[ deIdp. ’ )
. l . .. '. ..
o0
,F=2ncf d"Upr.dp co ) 2 (L)
. Yo 1 . T

_and’

u:;S the component of radiant energy flux along the:x- direction. Since G
~'numenicel ebproach paralleling the diffusion treatment is ultimately'desired,
"~ Eguation (3) is integrated over a small interval to give the integral

.. expression for energy. conservation. Indeed, the integral equation could

.+ "equally well have formed the starting point of the- investigation. In the

lresulting conservative form the way to insure conservation of energy in the

:_ difference equation becomes clear. The desirability of this conservative

; "'(3)

f: property of the equstions in fact dictates the choice of the followlng
~;system over alternative .forms based on .the differential equstion‘ Equation

L -
Eﬂ[ B, & = F(x,) - Fx,) ()
1 |

In the above we have neglected the rate of change of radiative energy in
comparison with that of the material energy as is justified for low

“ - temperature inieractions.

In order to remove the explicit appearance of I from Equation (k)
for the fluxes, we use Equation (2) to obtain an integral expression in
. which thevsonrces of radiation in the emission of the material are displayed.
.Forward and backward directions are treated seperately: for the forward



direction, p =0, the integral extends from 77 = -oo where I ﬁ;b) =
for p < 0 we take 77 = +ooand again assune I «ZB) = 0.

f Iud,uf—.[ 'Bd’C’f e M .au s
Jo ' Aeo 0 , T

© 0 ‘ oo | ool

j Iudu=[ Bd‘C'I (l)e Hooap (6)
1 :

T

‘The angular integratlons in Equations (6) are particularly simple
because the source B ‘does not depend on the angle Introducing the E (x)
) ,funnttons defined by: KN

- B (x) -ﬁ

these express1ons become
. l'

[; 3 udu f Be Ez (z' Z:) i (7) N

Equation (5) becomeu

tlx

..dtj Ede;eucj dv[joc (t; Z')dt'

+jt (2:* Za)dt’

2. . PR )
. +j R E2 (z' - ) d‘c‘ j E_?. (z*.,.-_q) dt'] - (8)

Equation (8) which is the starting point of the numericel work expresses
the dependence of the rate of change of energy in the selected region on
the attenuated sources as they compose the radiative fluxes. - The appearance

of Eb'functions instead of the ekponential arises from welghting with more

see, for cxemple, Appcndix A of "Introduction to the Theory of Neutron .
Diffusion”" by K. M. Case, George Placzek, F. deHoffmann, Los Alamos
Scientific Laboratory notes.



Surongly attenuated oblig_ue rays while the positive and negative terms
correspond with forward and ba.ckward contributions to the flux - integral .
We illustrate. the nature -of the contributions to Eque.tion (8) by schema.tica.lly .
indicating the behavior of the kernels cof the integra.nds ) :

For completeness, we return to the dii‘ferentia.l expression of
Eque_tion (3) to ta.bulate several alternative forms which may be of interest. '
aF + ?E' from Equation (h), - h.;_i"' o L ' '

aiM"at. x—Enf dyj [ +u§§]du
lmcj - d?)[ ’ | ) “ ‘ '. .(9),

in which Equation (1) has been used. Equation (9) expresses the statement
‘that the rate of change of material energy is the difference between rates

' Forming>

of absorption of I .(which occurs only in the average intensity) Equetion (2)



. as the negative and positive members of Equation (lO) The l1imiting case

for I is integrated separately in the forward and backward directions. '; L
Thus , the integrals contributing to ER’ similar to Equations (6), are. no

Lol -.m

-} . o . . AR R
' Using these results in Equation (9), ‘the: equation detemining the temperature:"-'
" of the material 1s:

(10)

,_c‘-r'%‘;enc] tom di)[eB(?:) I E(Z‘)E (I?: 3'|) dt']

" where C,-is the specific heat at constant volume of. the material and B(Zﬂ
aepends on position through the. temperature. Use of Equation (2) for I in
fwhich photon retardation has been neglected implies in Equation (10) that
..the energy in the radiation field must be- small enough compared with that of
ﬂthe material to warrant omis ion. from the energy equation.. Eqpation (lO)

‘a is a nonlinear integro—differential equation for the temperature containing
“'no further reference to the radiation field intensities. The terms correspond-

. ing to. the emission and absorption of energy by the material are displayed

of optically thin material in a vacuum is given by the first term, the
frequency integral of it gives the well known "Planck Mean Absorption
b Coefficien " .which is’ frequently computed together with th )

oss¢ land mean”»{?['" -
from absorption coefficient values ‘

The integral describing the contribution from absorption to the
-energy change in Equation (lO) can be transformed through integration by
parts..

.,"x i
.

I B(?:v) E, (I”C 'c1 1) d’C' 2 B('g;) J' (w Ee (2:' Z“) d?j 5

z ) ..
-Ioo wEQQ: t‘)d?:' .



Substitution in Equation (10). gives the following alternativé form:

e OR

. ! w > ‘4
%33 exc | o dv)[t%]ﬂe(’t'-t)dt‘
' X | T
U N ' - ' . . : . ... .
o . » . T
- = - ! . . . T Lt
[ Brew ] o L

'Further integrﬁtion byAbarts in Equation (11) yields:

K dt-encj 2 m)jm (o] ez e

III.: LIMITING EXPRESSIONS AND APPROXIMATiONS' L

Equation 112) 1s a convenient form to.discuss the limiting case in
.which the temperature changes by a small amount within a mean—free path ]
_ Expansion of B" (') about the point T allows the evaluation of the lead-- e
' ing term of the Lntegral in Equation (12). ‘The result 1s

. .OO o0 )
T t? 3 dx dx o
. .:' oo - : L . : R
_lme d (S.T.f @ °W)=EE 1(i-'iT—> SRR IN CE
3 & ax Jo @ T T3 Wop ax e 7 i T T
where [ o0 '
. . 1 _Jo @ g——T
7R [oo@ a
o aT

is the Rosseland meen-free path. Equation (13) gives the rediative diffusion
apprroximation in which the energy of the radiation field has been neglected.

The optically thin result obtained from Equation (lO) 1s the oppos1te

extreme in approximation



CV EE=-0"p ca T s . ' . . (l)'})
where oo
o j B 0 aV
_Jo.
. p. 7o
j ‘B:qV
P '

is the Planck mean absorption coefficient

If the ansorptjon coefficient depends on type of mater1al density

and temberature but not on the” frequency (the gray aimos;here approx1mat10n) f-f"~

'the integration over freguency can be carrled out in Equatlon (10)
“dT R S 1 (% g T oo
. '__ = - _ = ¥ . . .: | (."..‘.

S w® T ca [ T (D) + 2,[60 T (AC'.) .El'._(l?f T |).d?:‘} F(I5)

The' corresponding approx1mat10n to Equution (8) is Obtained by using the
following value of F(x ) in Equatlon (5) ‘

,ch'j)=i§U o) 8, @ w)wlc z:')Ea“c r)m:}os)

IV.“ DIFFERENCE EQUATIONS FOR RADIATION TRANS?ORT

In formulatlng a suitable numerical approximation to Equation (5)

we keep in mind several criteria. The method should

. be as,simple and easy to compute as possible
2. ‘retain pfdperty of energy conservation
3. be sufficiently accurate to limit to the diffusion and
transparent regimes properly ) .
L, ‘have an adequately wide region of numerical stebility to

permit fast integration forward in time.

In conformity with the radiation diffusion - hydrodynamics treatment,
the region of interest is divided into a limited number of adjacent slabs
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or zones. In each zone the characteristic temperature is chosen so that

the corresponding specific cnergy when multiplied by the zone mass gives
the correct total zone energyt As a first approach to this method, we
devise & simple explicii.ftreatment of.the temperature. The time derivative

ot the material energy is written as: -

() .

“3+1/2 are the zone mass and specific
.y depend on time through its’ temperature. -
a subsequeut section, this formulation s

1 nalVStability Thare also will be exrors of second

':rd criterion above 4t is necessaiy to use -

he ntegrals contributing to the radiation flux

el ) _T.imitlproperly to the diffusion expression. As would
: be expec_ed from the fact that the diffusion flux is given as a first ’

>J derivative, it is necessary in the zone*‘immediately adJacent to the boundary o
. at which the flux is evaluated to use a ]inear interpolation of the source
"strength. In zones farther away the crlterion of. simpliclty suggests
assumption of constant source strength for - the. "tail"'of %he- integration."

;Since the independent variable in the flux integrals is the optical depth -

Zuafit is nccessary to evaluate it at zone interfaces on each cycle ‘of the
‘calculation. At time n the depth is given simply by

Tj 1Zl”‘m,/e +1/2 o L (18)
- in whichcr is evaluated from the zone tempe ratures T2+172. The optical
depth.of the zone center:isgg&l/é .= 1/2 Za +2§+1). ‘Intervals'ﬁga;l/z

T scheme in which the source is taken to be constant -



e et

11

1n the optical. depth in general are expected to depend on pos1t10n reqa;ring
that the interpolation formula be corzespondinglj more general. -

In evaluating F(x ) from Eguation (16), the use of linear 1nterpolatlon
is restricted to the half-zone on either side of the zone interface. In

this region the fourth power of the temperature is given by interpolation:

il

-
Tearh -z

where

1$]
I

! GG

B b
o 2mye - Tpaped
I G Ga

Carrying out the integration introduces E “for the constant regions and

3

- both EB and Eu for the llnear regions. The flrst 1ntegral correspondlng
to the- forward current in Equation (16) 1s_given by the sum of &hree terms;'

‘lf,_]; = aj {]/E - E (’Z‘ l/2 } 4“*"‘.‘ .. [1/3 + Eh (Z’ 1/2

2y Tfj"'l/? [E3 (iji ‘ l/2 E (7: 7:3 l)] ST (20}

corregpondlng to the. linear reglon from 25 to s j 1/2, the constant temperature

half-zone from'z’ 1/2 tO‘CB l’ and the romalning zones of conutant temperature

for 2;4

1

31

O ) Pt ) B
G Ge1) Tt Gt G SV 9)



The analogous set of three terms for the backward current

°; =% {1/ 2 B Whnaye - 2’3)]

- [1/3 +l/2 ) Cyge - 73 By A '“CJ'.)J ‘ i
gbjjj §+1/2 [E ("crlxe ) - E3-(zj+l - tﬁ} T

P Z i+1/2 [Es @ -5 Q/ )-]
L 1“J+l coe ‘
. are %o be summed and subtracted from . the forward current to form the net’ .
o flux at the p01nt 27 " The- complete differen e equatlon for the temperature :
: results . * O et . L. . . .
LS —— . e e - - e, . . .
FJ -0, (1fJ +2fj' f b _..,-)Y').. i b) .: : : . .- (.22).
. E;from substitutlng such expxessions for the zone boundary fluxes in the’ energy
' Equation (5) of- hich Equatlon (17) is ‘the- approxlmatlon for the left hand
side. This expression may be solved for T§+1/2 All of the contrlbutlng
terms are assumed to- be functlors “of - the known temperatures Tn 1/2 whlch
:.may be replaced in storage by the newly calculated values at the advanced
'n.time. Consequently, the method may be termed "an expllclt 1ntegral formu—

-~latlon of the’ tlme-dependent radiatlon transport equatlon

Loundary condltions are dcrlved by conslderlng the flux expreSsion

A free surface conditlon corresponds to settlng the source to zero fo_ all

_Zones beyond the frce interface A "hotr wall" boundary to simulate the

problem of the development of the dlffusion wave from a hot source corresponds

to giv1ng 2ll zones beyond a glven boundarj “the same temperature.



.ii:‘more modest effort will: 1ndicatc some of the practlcal limitations to. be '

13 .

V. STABILITY OF THE DIFFERENCE EQUATIONS S .

The system of difference equations, Equation (5), with' boundary
conditions and initial conditions may be solved for the temperatures of -the .
. material in an explicit step-by-step numerical ca]culation to obtain the
-solution at any desired time. In addition to. the question of the truncation .
error incurred in the numerical approximation the question of stability of
the solution muut also be raised.. If small errors are introduced perhaps
through rounding of the numbers, it 1s necessary ‘that ‘the- difference equaLionsifr

not’ amplify the errors witnout bound .’ It is° frequently “the’ case that an

inequality must be satisfied restrictin0 the Size of the time step to insure
. the stability of the solution in this sense. ' ’ h

Investigation ol °Lahility of the nonlinear equation w1th boundary

-'conditions is a job’ bcyond the scope of’ this investigation.~ However,. a

-observed in the numerical work to follow. ‘As is generally done in this h

situation, the eouations arc linearized and the Von lieumann criterion is”
n

ir1/e
become linear with Lonstant cooffiCicnts nrov1ded that the SOlULlOn lS

invoked. Introduc1ng the dependent variablc § +1/2 (T ) the equations.”'

restrlcted to small variations.-

T

43*1/ ( ntl - In : ')u.: La I 2P
YAy | | or/E Jerfen T 2 \1gr RN 30

u(T j*1/2

S ER TS R-CF PN ol TS RO LA L T L B L a+1 aba+1 B3Py
(23)
The f's and b's are functions of the @?

i+l/2
fornulalion of the system. Since these equations are now linear equations

in accordance with the explicit~‘

with (assumed Locully) consteant coefficients, they also have the same form-
as the equations governing propagation of small errors. The solution is-

assumed to have the form:

Jae) -0 - (24)
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in which the wave number k plays the role of a free parameter while ¢ ig
to be determined. For stability ’

’éxﬁtlfa 1 fof all k ' »

since the above is the amplification factor of the solution in one-time
interval.~

In order to further simplify the analyois the mesh interval and
absorption coefficient are assumed Lonstant. Thus, )

AXyfe =

Olinfo = ST forall i,

‘which pérmits some terms to drbp ‘out of the'flux- Substituting “the” assumed

one obtains

, solution Equation’ (2&) into Eqput;on (23) and dividing by §F+l/é
Ce OZQC_ z s i . '; =.;.; Ly R
j+l/2 1) fJ ¥ fJ 33 13 bJ..._.3bj L
- af 3+1 2’ j+1 ~gfi AP 3+1 2 5+1 + bj+1 . con (25) -
whe&ei . . 3 ',.}»' ..' L
Sdrl/e 3 :
IR A~ c.a. (T‘jﬂ/e) At

afhmel [1/2 E; (3 )} + B [ “1/3+ B, () + () & (é)]:‘
ety e [E & - =, <A>]

3r3 =.g;le-i‘.k(ml)ﬁ [E3 (nA)'- ?é'(n+;)A]
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i

) = [1/= N >] Y [J./s‘- 5, &) -2 5, (2)]

A
b=k (§)-E, (&
2P} 3(2) 3()
3bJ 1FA [E (na) - E, (n+1) A]
n=1
in which
af =1/ 1+ e
e L1 -1kAy.
AiSO .o . .
_odkA Lok )L AR oy
lf5+l = e lfJ ; 2f5+l e 21‘3 ; f,j+l 3fJ ,
_IKA G, L AKA oy . o, L AKA T,
‘ lb-3+l—e le ; 2bj+1'e' b! ; b = e b

L2ty P 3mT S 3y

. Combining these terms and rearranging them

St -7;1/5 , {% (1 - cos 1) [1/_'3'.-'54(%) ey ‘(A)]‘ 28

vhere - : ' o : o
Z: -2'.2 [cos knA - cos k(n+l\A] [E3(nA).- E3(n+l) A]
. n-l - . ’ . ’ o

The terms in the summation can be reduced to.a single integral by inter- .

changing summation and integration :

. oo 1 A 1 ‘

. ' ' v oo dkA pA(ik - =
Z=ZJL pdp {(l- e M) (em™-1)e .( . u)

D By L) ﬁ>}
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JAN
1 O Ty ik s e M) (1KA
=fo uay (Lo )(e 1) , L( } 1)
1

-A(ik- —) (ik +—)

: j.L - cos kA (1 - cos kA) sinh f%‘ + sin° KA (cosh—ﬁ - 1)
= <2 e ‘ *
. ‘ cosh —ﬁ = o8 kA

"The quantity Z is'a fun\_tion of the two d'imensionlnss quantities kA and /_\.
in which kA plays “the role of a para.meter to be varied in order to find the

fleast stable value.

' First, stabllity is oonsidered for the limiting case of A??l for
' w}xich ' ) ' .

Z=-2 (l+2 *oskA) (l-coskA)E (‘.) .A'—,v?l'

"In this case, eaA. < 1 since IZI is less than the first term insuring that
,the coefficient of

is positive. It is easy to see that the most
. ,j+l/2
'stringent stability condition is reallzed when kA (2n+l)x , n=0,1,8 ...

for which

L be(a).
"73“‘1/2[ 2 - £ ‘A,)].‘—l

- . whgre'
2(8) = 1/3 - El+ &) -% E (A)

For A>=>1 , f(A)‘= 1/3 afld L =0 giving the limiting stability condition

a2 .
30 C X g . .
At"_—'---———3—_——' s A771 C s (27)
8 ca ‘I‘ :
As is expc_cted from the fact that the difference equation becomes Just the
explicit diffusion equation in this case, Bquation (27) is the dlfi‘usion
stability condition. In general, i‘(A) is smaller than 1/3 as shown in

Flgure 1. For A ««<1 sn expansion of £ yields:
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2 2 A3 A
f~.3-‘§—+ _1_11%_ Do (78) , A<zl

where

,é/n7

i

5772

Having obtained the stability. condition for la:rge’ A it is now necessary
to investigate smaller values of A. .In terms of defined dquantities the
amplification factor is:

IOt =1 g .'7;1/'2 [% '(‘1'-..- cos ¥A) £ (A) —):‘] E

While, for larye A; the term in z could be neglected it must be considered
in other cases. Some of the ~pro§er£ie.s of Z are:

1. Y (em +.kA).= )} (12&)‘, n = 1,é,3'...

2. Y(en - xa) S Y () - ,

30 Y(w=0)=0 ,
x -‘- A R ]
b T(a=z)=-2] e * —HF—pgpco ,
. [V cosh =
_é sinhé
5. Z(kA=ﬂ)=l+ e M udp > 0 .
0 cosh = + 1

‘fhe stability behavior for A «<«1 1s more complicated methematically
than the diffusion limit discussed abm;e because z contains the leading
term in Eqﬁation (e6). It is also true that Z docs not teke a simple limit-
ing form in the ngighborhood of kA = 0. With neither a closed form expression
:'for-z in the general case nor even one for A << 1, the investigation has
taken the form o;‘ evaluating integrals which bound Z from above and below.

For A <<l the result of the boxmc}ing argument indicates that the coefficient
of — L

+1/2 .
it rapidly falls to zero at kA = O. The stability condition,

remains positive, that it has a maximum value near kA = O, and that
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A
7341/

<l , Azl

gives the limiting time interval -
pC,

At = .
20-caT

This value, depending.not at all on the zone size . Ax, is Just the conﬁition
that the energy removed from an optically thiﬂ zone in fhe time interval

not drive the material temperature negative enough to produce instability.
The numerical value of the coefficient, hbwever, depends on the lineerization
of the equations. A.value representing the condition thgt the temperature

in the actual equations must not become negative in a time step is:

o C
At £ by

5, Accl ' (28)
o ca T

which is td be preferred over the.previous value.

As a basis for stability estimates to be tested with sample calculations
the two limiting values éiven above are incorporated into a simple inter-
"polation formula:

3 at .
ﬂugl.;.g A& . (29)
pC -
v .
In an actual calculation in which the quantities entering Equation (29)
depend on the zone, the minimum value of At resulting from testing all zones

of the problem should be used to govern the time step.

DEF :maet



